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There is something fascinating about science.  One gets such wholesale returns of 

conjecture out of such a trifling investment of fact.  ~ Mark Twain, 1883 

 

Twain meant it as a witticism of course but there is something fascinating about 

science.  From a few bones, scientists infer the existence of dinosaurs, from a few 

spectral lines, the composition of nebulae, and from a few fruit flies, the mechanisms of 

heredity.  From a similarly trifling investment, some of us presume to conjecture even 

about the mechanisms of conjecture itself. 

Why does science, at least some of the time, succeed?  Why does it generate 

accurate predictions and effective interventions?  With due respect for our accomplished 

colleagues, we believe it may be because getting wholesale returns out of minimal data is 

a commonplace feature of human cognition.  Indeed, we believe the most fascinating 

thing about science may be its connection to human learning in general, and in particular, 

to the rapid, dramatic, learning that takes place in early childhood.  This view, the theory 

theory, suggests that starting in infancy, continuing through the life span, and canalized in 

scientific inquiry, many aspects of human learning can be best explained in terms of 

theory formation and theory change.  
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Theories have been described with respect to their structural, functional, and 

dynamic properties (Gopnik & Meltzoff, 1997).  Thanks to several decades of work in 

developmental psychology, we now know a great deal about the structural and functional 

aspects of children's theories.  That is, in many domains, we know that children have 

abstract, coherent, causal, representations of events, we know something about the 

content of those representations, and we know what types of inferences they support.  

We know for instance, that 6-month-olds' naïve physics includes principles of 

cohesion, continuity and contact, but not the details of support relations (Baillargeon, 

Kotovsky, & Needham, 1995; Spelke, Breinlinger, Macomber, & Jacobson, 1992; 

Spelke, et al., 1994).  We know that 4-year-olds' naïve biology supports inferences about 

growth, inheritance and illness but not the adult concept of ‘living thing’ or 'alive' (Carey, 

1985; Gelman & Wellman, 1991; Inagaki & Hatano, 1993; Kalish, 1996).  We know that 

2-year-olds' naïve psychology includes the concepts of intention and desire but not the 

concept of belief (Flavell, Green, & Flavell, 1995; Gopnik & Wellman, 1994; Perner, 

1991).  Moreover, we know that across domains, children's naïve theories support 

coherent predictions, explanations and even counterfactual claims (Harris, German, & 

Mills, 1996; Sobel, 2001; Wellman, Hickling, & Schult, 1997).   

 However, the theory theory is not just a theory about what children know or what 

children can do.  It is, centrally, a claim about how children learn. In this respect, it is the 

dynamic rather than the structural and functional aspect of theories that is critical. If 

children's reasoning is like scientific theory formation, then children's naïve theories 

should be subject to confirmation, revision and refutation and children should be able to 

make inferences based on evidence from observation, experimentation and combinations 
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of the two.  

Until recently, this dynamic feature of theories has been difficult to explain.  If 

children’s knowledge about the world takes the form of naïve theories -- and if 

conceptual development in childhood is analogous to theory change in science -- then we 

would expect the causal reasoning of even very young children to be very sophisticated. 

A causal "theory" (as distinct from, for instance, a causal module or a causal script) must 

support novel predictions and interventions, account for a wide range of data, enable 

inferences about the existence of unobserved and even unobservable causes, and change 

flexibly with evidence (Gopnik & Meltzoff, 1997).  Moreover, theories have a complex 

relationship with evidence; they must be defeasible in the face of counter-evidence – but 

they can’t be too defeasible.  Because evidence is sometimes misleading and sometimes 

fails to be representative, the process of theory formation must be at once conservative 

and flexible.  

In recent work we have focused on causal learning as a fundamental dynamic 

mechanism underlying theory formation. In thinking about what causal knowledge is we 

have been influenced by recent philosophical and computational work proposing an 

“interventionist” view of causation (see Woodward, Hitchcock, and Campbell this 

volume).  This view stands in contrast to many traditional ideas about causation in both 

adult and developmental psychology. However, we believe that an interventionist account 

of causation not only helps to elucidate tricky metaphysical questions in philosophy but 

also provides a particularly promising way to think about children’s causal knowledge. 

  As noted, much developmental research on causal reasoning has looked at 

children's understanding of domain-specific causal mechanisms (Bullock, Gelman & 
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Baillargeon et al, 1982; Leslie & Keeble, 1997; Meltzoff, 1995; Shultz, 1982; Spelke et 

al, 1992; Wellman et al, 1997; Woodward, 1998; Woodward, Phillips & Spelke, 1993).  

Although this research tradition has successfully overturned Piaget's idea that young 

children are "precausal" (1930), it has followed Piaget's lead in treating knowledge of 

distinct physical and psychological mechanisms of causal transmission as the hallmark of 

causal understanding.  

Specifically, developmental researchers have largely accepted the idea that causal 

knowledge involves knowing that causes produce effects by transfer of information or 

energy through appropriate intervening mechanisms.  In an influential monograph on 

children's causal reasoning, the psychologist Thomas Shultz wrote that children 

understand causation "primarily in terms of generative transmission" (1982).  Similarly, 

Schlottman writes that “mechanism is part of the very definition of a cause” (2001) and 

Bullock, et al (1982) conclude that the idea that “causes bring about their effects by 

transfer of causal impetus” is “central to the psychological definition of cause-effect 

relations.” 

  Consistent with this causal mechanism or "generative transmission" approach, 

psychologists have suggested that even adults prefer information about plausible, 

domain-specific mechanisms of causal transmission to statistical and covariation 

information in making causal judgments (Ahn, Kalish, Medin & Gelman, 1995).  Some 

philosophers have also adopted a transmission perspective, arguing that causal 

interactions are characterized by spatiotemporally continuous processes involving the 

exchange of energy and momentum, or the ability to transmit “a mark” (Dowe, 2000; 

Salmon, 1984; 1998). 
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However, although the generative transmission model of causation is arguably the 

dominant view of causal knowledge in the developmental literature, there are several 

respects in which this model critically fails to account for our causal intuitions.  Many 

events that we believe are causally connected (e.g., losing track of time and being late for 

class; taxing cigarettes and reducing smoking) are not, at least in any obvious way, 

characterized by mechanisms of transmission.  Second, as the philosopher Jim 

Woodward observes, there is no obvious reason why it should be of value to us to 

distinguish those events that transmit energy or information from those that do not 

(2003); those aspects of causality that make it of central importance to human cognition 

(prediction and control) do not seem to be captured by the concern with spatial and 

energy relations that characterize the transmission view.  Furthermore, nothing in the 

generative transmission model distinguishes causally relevant from causally irrelevant 

features of transmission. Generative transmission models fail to explain why, for 

instance, the momentum transferred from a cue stick to a cue ball is causally relevant to 

the ball’s movement while the blue chalk mark, transmitted at the same time and in the 

same manner, is not (Hitchcock, 1995, this volume).  

Critically, the tendency to equate causal understanding with an understanding of 

mechanisms of causal transmission may pose a particular problem for the theory theory.  

Recent research suggests that adults cannot generate a plausible account of causal 

mechanisms, even in domains where they consider themselves highly knowledgeable 

(Rozenbilt & Keil, 2002).  Keil has suggested that we suffer from an "illusion of 

explanatory depth" and that our causal knowledge may amount to little more than "one or 

two connected causal beliefs" (2003). He has argued that "calling this causal knowledge 
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folk 'science' seems almost a misnomer" and that "The rise of appeals to intuitive theories 

in many areas of cognitive science must cope with a powerful fact.  People understand 

the workings of the world around them in far less detail than they think" (2003).  

If having a theory is coextensive with having an account of causal mechanisms 

than Keil’s suggestion is troubling, particularly since an impoverished understanding of 

causal mechanisms is presumably even more characteristic of young children than adults. 

Perhaps, children's causal reasoning is not particularly sophisticated after all.   

However, the interventionist account explicit in recent philosophical work and 

implicit in computational models such as causal Bayes nets provides a quite different 

account of what it might mean to have causal knowledge.  In the context of a causal 

model, the proposition that X causes Y (XY) means, all else being equal, that an 

intervention to change the value or probability distribution of X will change the value or 

probability distribution of Y. That is, the causal arrows in the graphical models are 

defined, not with respect to their relevance to a domain, their spatiotemporal features, or 

their ability to transmit energy or force, but (mirroring the way causality is understood in 

science) in terms of possible interventions. These interventions need not actually be 

realized or even feasible but they must be conceivable (see Woodward, 2003 for details).  

A causal relation then is defined, not in terms of its physical instantiation but in terms of 

the real and counterfactual interventions it supports.  A theory, on this view, represents a 

coherent and organized set of such relations, rather than necessarily involving a set of 

beliefs about physical processes or mechanisms. 

Recently, both statisticians and philosophers have argued that this interventionist 

account captures precisely what it means for a variable to be a cause (see e.g., Pearl, 2000 
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and Woodward, 2003).  Learning algorithms based on these models support novel 

predictions, interventions, inferences about a range of causal structures, and inferences 

about unobserved causes.  Arguably then, knowledge of causal mechanisms and 

processes of transmission may not be of central importance for at least some of what we 

need theories to do.   

Note, moreover, that an interventionist account of causal learning is consistent 

with, and indeed predicts many of the findings that have been associated with the 

generative transmission model.  In looking for instance, at children’s inferences about 

force relationships, Shultz first taught the children what types of interventions were 

relevant to outcomes (e.g., that striking a tuning fork in front of an open box created a 

sound).  Shultz then struck two tuning forks; the first failed to temporally covary with the 

sound (because it was positioned to the side of the box) while the second did covary with 

the effect (because the experimenter struck the second fork and simultaneously turned the 

box to face the first).  Children chose the first tuning fork (with the appropriate 

transmission relationship) as a cause and rejected the tuning fork that merely covaried 

with the effect.   

However, the relevant covariation information for children might not be merely 

the temporal covariation of the tuning fork with the effect but the covariation of 

interventions and outcomes; that is, children could have learned that turning the box was 

as critical to the effect as striking the fork.  Indeed, in novel cases like this, arguably the 

only information that children have about processes of causal transmission is the 

evidence of effective patterns of intervention. Given that any causal relationship (e.g., 

flipping a switch and a light turning on) can be instantiated by a vast number of causal 
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mechanisms (many types of wires, bulbs, circuits, etc.), it may make sense that children's 

naïve theories should focus on the connection between interventions and outcomes rather 

than on the myriad mechanisms that might realize it.  Indeed, one of the virtues of 

theories may be that they enable us to make powerful predictions despite our often 

substantial ignorance about underlying processes and mechanisms (our "trifling 

investment in fact"). 

Note that scientific theories, as well as naïve ones, often remain agnostic about 

processes of transmission while committing to hypothetical interventions. Newton 

developed his theory of gravitation without knowing any mechanism that might enable 

masses to attract one another; Darwin developed his theory of evolution without knowing 

any mechanism that might make variation in the species heritable. Thus although we 

might say informally that Darwin posited natural and sexual selection as “mechanisms” 

for evolution, we do not mean that Darwin discovered spatiotemporally continuous 

processes by which energy or information is transferred.  Rather Darwin inferred that 

traits that enhance an organism’s reproductive success will be more prevalent in the 

population; that is, that changes to one set of variables will affect the outcome of other 

variables.  Thus scientific theories, like naïve ones, are not necessarily derived from, or 

committed to, particular causal mechanisms.  Rather, in identifying the causal structure – 

the real and hypothetical interventions the variables support -- theories help narrow the 

search space for the relevant physical processes. 

Critically, we do not mean to suggest that substantive assumptions about 

spatiotemporal relations and domain-specific knowledge do not play a fundamental role 

in children's causal understanding.  Indeed, one of the important challenges for cognitive 
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science is to understand how knowledge about particular physical relations in the world is 

integrated with evidence about interventions and patterns of covariation. In what follows 

we will discuss some important interactions between children’s substantive causal 

knowledge and formal learning mechanisms.  Even more critically, we do not mean that 

children only learn causal relations from interventions.  Children may infer causal 

relations in myriad ways, including from spatial relations, temporal relations, patterns of 

covariation, and simply by being told.  The claim rather, is that certain patterns of 

interventions and outcomes indicate causal relationships and when children infer that a 

relationship is causal, they commit to the idea that certain patterns of interventions and 

outcomes will hold.  

One of the exciting features of the interventionist account of causation is that, 

together with theory theory, it generates an array of interesting and testable predictions 

about children’s early learning. At a minimum, if children’s causal knowledge takes the 

form of naïve theories and if causal knowledge is knowledge that supports interventions, 

children should be able to: A) use patterns of evidence to create novel interventions B) do 

this for any of a variety of possible causal structures; C) use evidence from interventions 

to infer the existence of unobserved causes; D) distinguish evidence from observation and 

intervention in their inferences about causal structure E) effectively weigh new evidence 

from interventions against prior beliefs, and F) distinguish good interventions from 

confounded ones.  

In what follows, we will walk through this alphabet of inferences. We will discuss 

respects in which the causal Bayes net formalism provides a normative account of these 

components of theory formation and we will review evidence from our lab suggesting 



 10 

that very young children are capable of this type of learning. 1  

A) Making novel interventions 

 In the absence of theories, you could safely navigate a lot of causal territory. 

Classical conditioning, trial-and-error learning, and hard-wired causally significant 

representations (of the sort that make nestlings cower when hawks fly overhead -- and 

arguably of the sort that is triggered by seeing one object strike and displace another, 

(e.g., Michotte, 1962)) are effective ways of tapping into real causal relations in the 

world. Each of these abilities lets us track regularities in the environment and predict 

some events from the occurrence of others. Some of these abilities even support effective 

interventions. 

 Like other animals, human beings seem to have innate, domain-specific causal 

knowledge (Spelke et al, 1992), the ability to detect statistical contingencies (Saffran, 

Aslin & Newport, 1996), and the ability to learn from the immediate consequences of our 

own actions (Rovee-Collier, 1980; Watson & Ramey, 1987). Unlike other animals 

however, we routinely use the contingencies and interventions we observe to design 

novel interventions.  We routinely meet regularities with innovation. 

 Some of this inferential power may come from the way that human beings 

represent causal knowledge. Elsewhere (see Gopnik et al., 2004) we have suggested that 

causal Bayes nets representations provide a "causal map" of events in the world.  The 

analogy to a spatial map is helpful because it explains both some of the advantages of the 

                                                 
1 Throughout, we will assume some familiarity with the causal Bayes nets formalism (that is, we 
will assume that readers have already read the introduction to this book).  Thus we will use terms 
like causal graphs, the causal Markov assumption, and conditional independence and dependence 
without definition.  
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causal Bayes net representation and some of the disadvantages of alternative ways of 

storing causal knowledge.  

 Some animals, like ants, seem to represent spatial relations egocentrically.  Ants 

know where their nest is in relation to their own body movements but if they are scooped 

up and displaced even slightly, they lose their way, even in familiar terrain (Sommer & 

Wehner, 2004).  Other animals, like mice, construct spatial maps.  Once mice have 

explored a territory, they can always take the shortest route to a goal, no matter where 

they are placed initially (Tolman, 1932).   Such cognitive spatial maps reveal the 

underlying stability of geometric relations. 

 Causal relations can also be represented egocentrically, in terms of the immediate 

outcome of one's own actions (e.g., as in operant learning). However, like an egocentric 

spatial representation, operant learning fails to represent the relationship of variables to 

one another.  Operant learning restricts you to learning the immediate outcome of your 

own actions, and even these can only be learned by trial and error.  However, if you 

represent causal events as they relate to one another, then -- even if you are not part of the 

causal structure, or even if you own relationship to the events changes -- the stability of 

the underlying causal structure is preserved. From such stability, may come the ability to 

negotiate novelty. 

 Causal Bayes nets provide just such a coherent, non-egocentric representation of 

the causal relationship among events. In a literature rife with stories about cigarette 

smoking, stained fingers, and lung cancer; birth control pills, thrombosis, and strokes, 

and prisoners, sergeants, and firing squads, almost any concept can be illustrated with a 

macabre example.  We work with preschoolers however, so we will make use of a more 
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benign, indeed suburban, illustration (adapted from Pearl, 2000): Suppose you walk 

outside and see that the grass in your front yard is wet.  You might guess that it has 

rained.  Because you believe the weather is a common cause of the state of your front 

yard and your back yard, you will be able to infer that the grass in your backyard is most 

likely wet as well.  You could represent this causal structure as the causal Bayes net in 

Figure 1 below, where each node is a binary variable taking either the value wet or dry. 

Figure 1: A causal Bayes net 

Weather 

 

 

Front yard    Back yard 

 In this causal structure, the state of the front yard and the state of the back yard 

are dependent in probability.  Knowing something about the front yard will tell you (in 

probability) something about the state of the back yard. That is, you can use knowledge 

of the causal graph and the known value of some variables in the system to predict the 

(otherwise unknown) value of other variables.  

However, the critical thing about causal Bayes nets, indeed the thing that makes 

them causal, is that they can also support inferences about the effects of interventions. 

We will discuss interventions in more detail in the following section, but roughly 

speaking, the arrow in the graph between the weather and the front yard encodes the 

proposition that, all else being equal, changing the state of the weather will change the 

state of the front yard.  Importantly, the arrow retains this meaning even though (in the 

real world) we can't actually intervene on the weather (short of global climate change 
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anyway). Knowing the causal graph lets you predict the outcome of interventions – 

whether or not you've ever seen them performed and indeed whether or not you could 

ever perform them.  Thus unlike hard-wired representations or trial-by-error learning, 

causal graphs support genuinely novel inferences.  

However, the absence of the arrow between the front yard and the back yard is 

also informative. Although the state of the yards are dependent in probability, there is no 

direct causal link between them  -- all else being equal, changing the one will not change 

the other.  Causal graphs thus represent the distinction between predictions from 

observation (if the front yard is dry, the back yard is probably dry as well) and 

predictions from intervention (wetting the front yard will not wet the back yard). 

In a series of experiments, we looked at whether, consistent with the formalism, 

young children could use patterns of dependence and independence to make novel 

predictions and interventions (Gopnik, Sobel, Schulz & Glymour, 2001; Schulz & 

Gopnik, 2004). We showed preschoolers, for instance, that three flowers were associated 

with a Monkey puppet sneezing (see Figure 4 below).  One flower (A) always made the 

Monkey sneeze, while the other flowers (B and C) only made the Monkey sneeze when 

flower A was also present.   

Figure 2: Evidence about three flowers 

 

 

 

Formally, A and the effect were unconditionally dependent while B, C and the 

effect were independent conditional on A. Applied to this case (and assuming no 




Ahchoo! Ahchoo! 
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unobserved common causes) a Bayes nets learning algorithm will construct the graph in 

Figure 3 below.  

Figure 3: Graph representing inference that flower A screens-off B and C as a cause of E. 

 

The graph says that A causes the effect and B and C do not. (It also says that there is an 

undetermined causal link between A, B and C, represented by the circles and the ends of 

the edge connecting those variables. In fact, there is such a link, namely the experimenter, 

who put all three flowers in the vase together.)  This structure in turn generates 

predictions about interventions. In particular, it implies that an intervention on A will 

change the value of C, but an intervention on B or C will not have this effect.   

Children were asked "Can you make it so that Monkey won't sneeze?"  Consistent 

with the prediction of the formalism, children screened-off flowers B and C and removed 

only flower A from the vase. Control experiments established that the inference was due 

to the pattern of conditional dependence and independence, not to frequency information.  

One might argue however, that children have only a very limited ability to make 

novel and appropriate inferences.  Children might, for instances, be able to use patterns of 

dependence to differentiate equally plausible causal candidates within a domain (i.e, the 

causal power of one flower vs. another).  However, innate or domain-specific knowledge 

might restrict the range of evidence children are willing to consider in the first place.   

Formal inference procedures might not be able to override or change children's prior 

        A o o B          o C

E
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beliefs.  

However, if, consistent with the theory theory, children develop their causal 

understanding from patterns of evidence, then domain-specific judgments ought to be 

defeasible.  Given appropriate evidence, children ought to be able to override prior 

knowledge and reason about truly novel events, including events that cross the 

boundaries of domains, and design truly novel interventions accordingly.  In order to look 

at the extent to which children could flexibly use evidence and formal inferential 

procedures to make genuinely novel causal inferences, we pitted children's domain-

specific knowledge against patterns of evidence.  

We showed children for instance, that three causes were associated with a 

machine turning on.  Two of the causes were domain-appropriate (buttons) and one was 

domain-inappropriate (talking to the machine). Talking to the machine and the machine 

turning on were unconditionally dependent but conditional on talking, the buttons were 

independent of the effect.  Thus the structure was formally identical to the structure in 

Figure 3. We asked the children if they could turn off the machine.  In a baseline 

condition, we provided children with no evidence and simply asked the children whether 

talking or pushing buttons was more likely to turn off the machine. 

Consistent with past research showing that children's causal inferences respects 

domain boundaries, children in the baseline condition chose the domain-appropriate 

causes (the buttons) at ceiling.  However, consistent with the predictions of the 

formalism, when asked to turn off the machine, 75% of the children ignored the buttons 

and said, "Machine, please stop."  Children were able to use the pattern of conditional 

dependence and independence to create a new "causal map" and to generate an 
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appropriate, but novel, causal intervention.   

In this experiment the relations between causes and effect were deterministic.  

Such definitive evidence might have made it particularly easy for children to override 

their prior knowledge.  However, in another experiment (Kushnir, Gopnik & Schaefer, 

2005), we tested whether children’s domain-specific preference for contact in physical 

causal relations could be overridden in light of probabilistic evidence that physical causes 

could act at a distance.  We showed children a toy with a colored surface and told them, 

“Sometimes the toy lights up.” Without further instruction, we gave children a block and 

asked them to make the toy light up.  Thirteen out of sixteen children (81%) 

demonstrated a strong initial assumption of contact causality, touching the block to the 

surface of the toy (the other three did nothing).  After their intervention, we showed 

children four pairs of blocks.  In each pair, one block activated the toy 1/3 of the time and 

always by contact.  The other block activated the toy 2/3 of the time and always at a 

distance (i.e., by being held 5-6 inches above the toy).  At the end of the experiment, we 

asked children to make the toy light up again. A significant number of children revised 

their original intervention and activated the toy at a distance (McNemar’s test, p<.05). 

Thus children seem to be able to revise their domain-specific knowledge and create novel 

interventions, even when given only stochastic evidence for new causal relations. 

If children's causal reasoning were constrained by innate representations or 

informationally-encapsulated modules, such flexibility and sensitivity to evidence would 

be surprising. However, it is less surprising from a theory theory perspective. The ability 

to overturn prior knowledge and learn something genuinely new is one of the chief 

virtues of scientific inquiry.  It may also be one of the hallmarks of childhood.   
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B) Learning a wide range of causal structures  

 If you were a Martian reading much of the classic literature on human causal 

reasoning, you might assume that Earth was a relatively simple place.  The stakes are 

sometimes high (Does camouflage protect tanks from being blown-up? Does gender 

affect college admissions? Does medication cause headaches? Baker et al., 1989; Bickel 

et al., 1975; Hammel, & O’Connell, 1975; Novick & Cheng, 2004)  but the questions, at 

least, are straightforward: Given a particular set of evidence, is C a cause of E?  

Many theories have tried to explain how people answer this question.  Accounts 

ranging from the associative learning accounts discussed above to Patricia Cheng's 

elegant power theory of probabilistic contrast (Cheng, 1997; Novick & Cheng, 2004), 

have looked at how people might estimate the relative strength (or, uniquely in Novick & 

Cheng, 2004, the conjunctive strength) of variables to produce an outcome.   

However, both the question and the ways we might answer it assume that 

variables in the world are already identified as (potential) "causes" or as "effects". A 

Martian might reasonably wonder whether events on Earth come with labels.   The 

question does not ask, and the theories do not answer, how we might distinguish causes 

from effects in the first place. Put another way, both associative learning accounts and the 

power PC account aim to explain how people distinguish the strength of different causal 

variables.  They do not explain how people make judgments about causal structure. 

Sometimes of course, events in the world are essentially "labeled" by the 

information around them.  Spatial cues, combined with prior knowledge about plausible 

causal mechanisms, may identify some variables as potential causes and others as effects. 

In other cases (not coincidentally including camouflage and explosions, gender and 
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college admissions, medicine and headaches temporal priority makes the distinction 

transparent  (Lagnado et al, this volume). 

 However, spatiotemporal cues are not always available in the input.  If cause and 

effect occur at nearly the same time (the dog barks and the cat runs) or if you walk in on 

the middle of a scene (brother is sulking and sister is mad) there may be no way to know 

"who started it". Moreover, even when temporal cues are present, they may be 

misleading.  A naïve learner who sees Mom search under the bed and then exclaim with 

joy upon finding her car keys might be justified in concluding that searching caused Mom 

to want her keys rather than that desire motivated the search. 

 More critically, any theory (naïve or scientific) requires knowing something more 

than the set of binary relations (does X cause Y?) that obtain between events. A 

prerequisite to theory formation must be the ability, not just to distinguish the strength of 

causal variables, but to organize variables within a causal structure.  Indeed, part of what 

differentiates a theory from an empirical generalization is that within a theory, causal 

relations are coherent and mutually reinforcing.  

 The causal Bayes net formalism provides a way to represent and learn complex, 

coherent causal structures without prior knowledge about whether variables are causes or 

effects. Although the formalism can incorporate background information from prior 

knowledge, substantive cues, and temporal order (see section E of this chapter), the 

direction of causal arrows can also be derived directly from the patterns of conditional 

dependence and independence in the data.  Some structures can be distinguished by 

observation only; others require a combination of observation and interventions. 
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Suppose for instance, that you see three correlated events and are trying to decide 

whether A and B cause C or whether C causes A and B. If the causal structure is a 

common effect (ACB) you are more likely to see A and C co-occur and B and C co-

occur than to see A and B co-occur. However, if the structure is a common cause 

(ACB), you are likely to see all three variables co-occur. B will be independent of A 

conditional on C in the common cause case but not the common effects case.  These 

structures can be distinguished just by observation. 

The situation is more complex if you are trying to distinguish other structures. For 

example, suppose you are trying to distinguish the common cause structure (ACB) 

from the causal chain (ACB).  In the common cause structure, if C occurs 

exogenously, it will activate both A and B and you will tend to see all three variables 

together.  Similarly, in the chain, if A occurs exogenously it will activate C which will 

activate B and again, you are likely to see all three variables co-occur. In both cases B is 

independent of A conditional on C. Such "Markov-equivalent" structures are 

indistinguishable under observation. However, these structures can be distinguished by 

intervention.  If you intervene to make C happen, you will increase the probability of 

seeing A and B if the structure is a common cause (ACB) but will have no impact on 

the probability of observing A if the structure is a chain (ACB) (See Steyvers, 

Tenenbaum, Wagenmakers & Blum, 2003 for discussion and evidence that adults are 

sensitive to these distinctions).  Given a combination of evidence from observation and 

intervention, the causal Bayes net formalism allows for learning the structure even of 

very complex, multi-variable systems. 
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Within the formalism, interventions are treated as variables with special features. 

Specifically, they must be exogenous (that is they must not be influenced by any other 

causal factors in the graph) and they must fix the value or probability distribution of the 

variables of interest.  After an intervention, the value of the intervened-upon variable is 

entirely determined by the intervention and not by any pre-existing causes (see Figure 3 

below).  Thus interventions on a Causal Bayes net break arrows into the variables of 

interest, performing what Judea Pearl vividly described as “graph surgery” (2000). We 

can then look at the "post-surgical" graph (after the intervention has taken place) and 

figure out what has happened to the other variables in the graph. 

Figure 4 
4a) A causal chain. 

XYZ 

4b) A causal chain after "graph surgery"; the intervention on Y breaks the arrow between 

X and Y. 

X  IYZ 

There are several different ways of formally capturing these relations between 

interventions, dependencies and causal arrows (see Pearl, 2000; Spirtes, Glymour, & 

Scheines, 1993; Woodward, 2003). One way to do this is in terms of what we have called 

the conditional intervention principle. The conditional intervention principle can be 

formally stated as follows: for a set of variables in a causal graph, A directly causes B 

(that is, AB) if and only if: 1) there is some intervention that fixes the values of all 

other variables in the graph and results in B having a particular probability distribution, 

pr (Y); such that 2) there is another intervention that changes the value of A and 3) 

changes the probability distribution of B from pr (B) to pr’ (B) but 4) does not influence 
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B other than through A and 5) does not undo the fixed value of the other variables in the 

graph (Gopnik et al., 2004).  

Although this principle may sound complex, it is simply a formal statement of the 

sort of intuitions about intervention and causation that underlie experimental design.   

In an experiment, if you want to find out the causal relationship between two variables, 

you intervene to hold all other variables constant, and then you intervene to manipulate 

the value of the variable of interest.  If, for instance, you want to know the causal 

relationship between A and B (represented by an arrow with a question mark in Figure 3a 

below) you can perform one intervention (I1 in Figure 5a) to hold all other potential 

causes of B constant and another intervention to change the value of A (I2 in Figure 5a).  

If the value (or probability distribution) of B changes, you can conclude that A causes B.   

Note also that the conditional intervention principle rules out confounded 

interventions.  Line 4 of the conditional intervention principle eliminates the graph in 5b 

(because the intervention on A cannot influence B except through A) and line 5 rules out 

the confounded graph in 5c (because interventions cannot change the fixed value of any 

other variable in the graph).  

Figure 5. Graphs illustrating the conditional intervention principle. 

5a) I1, fixes the value of other causes of B (clause 1 of the conditional intervention 

principle).  I2, changes the value of A (clause 2 of the conditional intervention principle). 

I1CB    

              ?           

I2A          
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 5b) I* is ruled out by clause 4 of the intervention principle because the intervention 

affects the value of B directly. 

 I1C B     

         ?   

     I*A  

 

5c) I* is ruled out by clause 5 of the intervention principle because the intervention 

affects other causes of B. 

 I1CB      

         ?   

    I*A   

  

Motivated by causal Bayes net theory (see also Lagnado et al, Hagmeyer et al, 

Rehder, Tenenbaum & Griffiths, this volume), researchers have recently shown that 

adults can make appropriate inferences about a wide range of causal structures beyond 

simple cause-effect parings.  Importantly, the evidence suggests that causal strength 

learning (and subsequent inferences) can and does take place in the context of complex 

causal models.  For example, Waldman (2000, 2001) has shown that adults are sensitive 

to the direction of causal arrows when learning and reasoning about causal strength 

relations – that is, they make the distinction between “predictive” and “diagnostic” 

inferences – a fact that cannot be predicted based on associative learning mechanisms 

alone.  Other studies (Waldman & Hagmayer, 2005; Lagnado et al, this volume; Sloman 

& Lagnado, 2005) have shown that, given causal models, adults can make inferences 
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about the effects of hypothetical interventions as well.  Thus, psychologically, causal 

strength judgments do not take place outside of the context of causal structures. 

All this should satisfy a Martian that adult humans can make appropriate 

predictions about observations and interventions in a broader causal context.  But of 

course, adult humans, particularly the university undergraduates tested in these studies, 

have extensive experience and often quite explicit tuition in causal inference. Moreover, 

for the most part these studies have focused on making inferences about evidence given 

knowledge of a particular structure, rather than learning structure from evidence. These 

studies do not tell us whether this sort of causal learning is part of a more fundamental 

human learning mechanism, and in particular whether it might be responsible for the 

impressive learning we see in very young children. Conversely, the studies of children we 

have just described all presented them with the classical problem of inferring which cause 

was responsible for a particular effect – which blicket set off the detector, which flower 

made monkey sneeze. In principal, these results might be explained by variations of 

earlier theories such as associationism or causal power theory.  Nor have studies so far 

tested explicitly whether adults or children  can use the conditional intervention principle 

to make inferences about complex causal structures, as the Bayes net formalism would 

suggest.  In the absence of distinguishing spatiotemporal information, can children use 

evidence from observations and interventions to learn the structure of causal chains, 

common effects, common causes and causal conjunctions? 

To find out, we introduced preschool children (mean age 4;6) to a gear toy.  

Children saw that when a switch was flipped, two gears, A and B, spun simultaneously. 

There were four possibilities: (i) the switch activated gear A and A made B go (ii) the 
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switch activated gear B and B made A go (iii) the switch activated each gear 

independently or (iv) the switch activated the gears but neither gear would spin without 

the other. Note that these structures are indistinguishable under observation; no matter 

which structure obtains, when you flip the switch, both gears will spin together.   

 The structures are however, distinguishable under intervention.  If for instance, 

you remove gear B, flip the switch on and gear A spins, you can  eliminate structures (ii) 

and (iv).  If you replace gear B, remove gear A, flip the switch on and gear B fails to spin, 

you can eliminate structure (iii) and infer that structure (i) is correct. This type of 

inference is a direct application of the conditional intervention principle.  Controlling for 

other causes of A (the state of the switch), an intervention on A changes the value of B 

(when the switch is on and A is present, B spins; when A is absent B does not) whereas 

controlling for other causes of B, an intervention on B does not change the value of A.  

You should conclude that structure (i) is correct and AB. Because the patterns of 

evidence under intervention are unique to each structure, the correct structure can be 

determined from the data that result from interventions. 

 Over a series of experiments we found that, consistent with the formalism, four-

and-a-half-year-olds were able to learn the correct causal structure, represented by a 

simple picture, from the type of evidence described above.  Children were equally good 

at learning all four structures (the two chains, the common effect and the conjunction).  In 

each case, when children were presented with the appropriate evidence, they chose the 

correct structure significantly more often than any of the other structures. Control 

experiments suggested that children's judgments were not based on substantive cues or 

prior knowledge about gears.  Additionally, consistent with the data reported in section A 
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of this chapter, children were able to use their knowledge of the causal structure to make 

novel predictions.  Children who had never seen gears A and B on the toy but were told 

the structure (e.g., that A spun B) were able to predict the evidence that would result from 

interventions (e.g., that when the switch was on and A was on the toy by itself, A would 

spin, but that when B was on by itself, B would not).  Again, children were equally good 

at predicting the outcomes of interventions for all four structures. (Schulz, 2003; Schulz, 

Gopnik & Glymour, in submission).   

 These experiments are particularly noteworthy because they were explicitly 

inspired by the Bayes net formalism and are not explicable by any other existing theory 

of causal learning. The physical and mechanical features of the gears were identical in all 

cases and the associations and covariations between the gears were also held constant. 

The complex pattern of relations between interventions and observations allowed 

children to learn complex causal structure – in just the way the formalism would suggest.      

 In their everyday life children intervene widely on the world and see a wide range 

of interventions performed by others. At least in simple, generative, deterministic cases, 

preschool children seem to be able to infer a range of different causal structures from 

patterns of evidence, and to predict patterns of evidence from knowledge of causal 

structure. Even very young children seem to rely on some of the same formal principles 

of causal inference that underlie scientific discovery. Such mechanisms may help 

children to develop intuitive theories of the world around them. 

C) Inferring the existence of unobserved causes 

 One of the critical respects in which science sometimes brings us genuinely new 

insight is by invoking unobserved causes to explain events. However, unobserved causes 
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are not the exclusive provenance of scientific theories. Children's naïve physics relies 

upon unobservable forces, children's naïve psychology upon unobservable mental states, 

and children's concept of natural kinds upon unobservable essences (e.g., Bullock et al, 

1982).  It is thus perhaps surprising that most psychological accounts of causal reasoning 

(Shanks & Dickinson, 1987; Cheng, 1997)  relegate unobserved causes to a background 

condition. 

 We have already discussed respects in which the causal Bayes net formalism 

supports inferences about the unknown value of some variables from the known value of 

others.  However, in some cases the formalism supports inferences about the existence of 

variables themselves.  In particular, if the known values in the graph generate patterns of 

conditional dependence and independence that appear to violate the causal Markov 

assumption, the formalism infers the existence of an unobserved cause.   

 In a series of experiments, participants (both adults and children) were introduced 

to a "stickball machine" (see Figure 3).  The two stickballs could move up and down 

(either simultaneously or independently) without any visible intervention (because they 

could be manipulated from behind the machine). The experimenter could also visibly 

intervene on a stickball by pulling up on the stick.  This might cause – or fail to cause -- 

the other stickball to move. 

Figure 3: The Stickball Machine 
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We looked at whether, consistent with the causal Markov assumption, adults and 

kindergarteners could use interventions and the pattern of outcomes to infer the existence 

of an unobserved common cause.  In these studies, participants saw that the movement of 

the two stickballs was correlated in probability.  They then saw that an intervention on 

stickball A (pulling on A) failed to move B and that an intervention on B failed to move 

A. On comparison trials, participants were given evidence consistent with AB (e.g., 

they saw that pulling on B failed to move A, but they did not see an intervention on A). 

If the movements of A and B are probabilistically dependent but intervening to 

"do A" fails to increase the probability of B moving and intervening to "do B" fails to 

increase the probability of A moving, the causal Markov assumption can be preserved 

only by inferring the existence of an unobserved common cause of A and B (i.e., that the 

true causal structure is: AUB).  This structure predicts the observed evidence: A and 

B are unconditionally dependent in probability but an intervention on either A or B 

breaks the dependence.  

Consistent with the formalism, both adults and children inferred the 

existence of an unobserved common cause when interventions on either stickball 

failed to correlate with the movement of the other. Adults drew the appropriate 
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graph (AUB); children inferred that "something else" (besides either of the 

stickballs) was making the stickballs move (Kushnir, Gopnik, Schulz & Danks, 

2003; Schaefer & Gopnik, 2003).   Importantly, participants only postulated an 

unobserved common cause when no other graph was consistent with the observed 

pattern of dependencies. The causal Bayes net formalism thus provides a 

mechanism by which evidence about observed variables can lead to inferences 

about the existence of unobserved variables. Processes like these might help 

explain how both children and scientists bring new theoretical entities into the 

world. 

D) Distinguishing evidence from observations and interventions 

At the core of the theory theory is the idea that children learn causal structure 

from evidence.  There are two ways we can get (firsthand) evidence about an event: we 

can see the event happen or we can make the event happen.  Importantly as we have 

implied in the previous sections, these two ways of getting data -- seeing and doing -- can 

lead to radically different conclusions, even when the evidence itself is otherwise 

identical. What you can learn depends, not only on what you already know, but on how 

you know it.  

In section A) we discussed a simple causal graph in which the weather was a 

common cause of the state of the front yard and the back (FWB).  We noted that 

using this graph, you could predict the state of the backyard  from the state of the front 

yard.  

Suppose however, that you buy a sprinkler for your front yard and set it to go off 

every morning at six.  Setting the sprinkler cuts the arrow between the weather and the 
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front yard and breaks the dependence between the front yard and the back.  The altered 

graph is shown in Figure X below.    

Figure X: A causal Bayes net with a sprinkler 

Sprinkler      Weather 

 

 

Front yard    Back yard 

If the graph is as depicted in Figure X, when you look outside and see that the 

grass in your front yard is wet, you will not be able to infer that the grass in your 

backyard is also wet.  Evidence that was informative under observation is uninformative 

under this intervention.2  

 One of the strengths of the causal Bayes net formalism is that it supports accurate 

inferences whether the evidence comes from observations, interventions, or combinations 

of the two. Because the causal graph under intervention is different from the graph under 

observation, the same evidence should lead to different inferences.   

 The theory theory implies that young children should be sophisticated causal 

reasoners.  Are children also sensitive to the distinction between evidence from 

observations and evidence from interventions and do they modify their inferences 

                                                 
2 We kept the example deliberately simple.  Of course if the state of the grass were 
measured as a continuous variable (how wet is it?) rather than as a binary one (is it wet or 
dry?) then you might observe that the front yard was wetter when it had rained than when 
it had not.  In that case, the intervention to set the sprinkler would not break the arrow 
between the weather and the grass and knowing something about the front yard would 
still tell you something about the back.  The arrow would be similarly preserved if you 
invested in an expensive sprinkler that only turned on when it hadn't rained – which 
might be a better choice for your lawn but (because the state of the sprinkler is no longer 
exogenous to the graph) a bad example of an intervention. 
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accordingly?   Note that, such sensitivity is not predicted by all models of causal 

reasoning.  Accounts of causal reasoning that use the  strength of the association between 

two variables as indicative of the probabilistic strength of the causal connection between 

them (see e.g., Dickinson, Shanks & Evenden, 1984; Shanks, 1985; Shanks & Dickinson, 

1987; Wasserman, Elek, Chatlosh, & Baker, 1993) are indifferent to whether the 

association is due to intervention or observation.  Because of this, the predictions made 

by causal variants of the Rescorla-Wagner equation and the causal Bayes net formalism 

sometimes differ.  

 In a series of experiments (designed primarily to look at children's ability to 

distinguish common cause structures from causal chains) we looked at whether children's 

conclusions changed depending on whether they observed the relevant evidence with or 

without an intervention. Children were introduced to the "stickball machine" described in 

Section C. Children were told  "Some stickballs are special.  Special stickballs almost 

always make other stickballs move."  Children were taught that one stickball might be 

special, both stickballs might be special, or neither stickball might be special.  

 In the test condition, children saw the stickballs move up and down 

simultaneously (without an intervention) three times.  The experimenter then visibly 

intervened by pulling on the top of one stickball; the other stickball failed to move.  In the 

control condition, the experimenter intervened by pulling on one stickball and both 

stickballs moved simultaneously three times.  The experimenter then pulled on the 

stickball a fourth time and the other stickball failed to move.  At the end of the trials, the 

experimenter pointed to each stickball and asked "Is this stickball special?" 
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 In the test condition, there is a correlation between seeing stickball Y move and 

seeing stickball X move.  However, intervening to move Y breaks the dependence.  From 

a causal Bayes net perspective, this pattern of evidence is consistent with the graph XY 

but not with the graph YX.  Children should say that X is special but deny that Y is 

special.  In the control condition, intervening on Y and seeing X move are 

probabilistically dependent throughout.  This is consistent with YX but not XY; 

children should say that Y is special and X is not.   

 Note however, that from an associative learning perspective, the strength of 

association between the stickballs is the same in both conditions.  The movement of 

stickball Y is associated with the movement of stickball X every time but one. If children 

are reasoning associatively, then in both conditions they should say that Y is special.   

 The children (four-and-a-half-year-olds) distinguished between evidence from 

observations and interventions and reasoned, not as predicted by associative learning 

models, but as predicted by the causal Bayes net formalism.  That is, children were 

significantly more likely to affirm that  X was special and deny that Y was special in the 

test condition than in the control condition, and significantly more likely to affirm that Y 

was special and deny that X was special in the control condition than in the test (Schulz, 

2001; Gopnik, et al., 2004). 

 Similarly, in the unobserved cause studies discussed in Section D, we reported 

that participants saw that intervening to move stickball X failed to move stickball Y and 

intervening to move Y failed to move X.  In control conditions however, participants saw 

X move by itself and Y move by itself, but this time the stickballs moved without visible 

intervention – the experimenter simply pointed at X when it moved by itself and then 
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pointed at Y while it moved by itself. Consistent with the predictions of the formalism, 

participants distinguished between the two conditions and only inferred the existence of 

an unobserved common cause of X and Y (XUY) in the intervention condition. (In 

the observation condition, they inferred the existence of two independent unobserved 

causes: U1X and U2Y.) 

 Pearl writes that "Scientific activity, as we know it, consists of two basic 

components: Observations and interventions.  The combination of the two is what we call 

a laboratory . . ." (2000).  Although making inferences about stickball machines may 

seem a far cry from scientific inquiry, the ability to distinguish evidence from 

observations and interventions is fundamental to both.  Sensitivity to the different role 

played by these "basic components" may help support children's ability to learn the 

causal structure of events in the world. 

E) Weighing new evidence against old beliefs 

A few pages back, we reported that preschoolers ignored a machine's buttons and 

asked a machine to stop after seeing – once – that talking and the toy activating were 

unconditionally dependent. We reported this as partial proof of the cleverness of four-

year-olds.  This might worry you. This might also worry our Institutional Review Board.  

Are preschoolers unreasonably impressionable?  Surely it's not that clever to override the 

whole of naïve physics on the evidence of a single trial. Surely -- even in Berkeley -- we 

don't want children going around talking to machines.  Learning flexibly from evidence is 

all very well, but can causal Bayes nets run amok?   

Well, no – at least not in this respect. Causal Bayes net representations can be 

inferred by a variety of different learning algorithms discussed constraint-based and 
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Bayesian learning algorithms (see Gopnik et al, 2004 for discussion). Both of these 

algorithms can take prior knowledge into account.  Constraint-based algorithms test pairs 

and triads of variables for independence and conditional independence.  By adjusting the 

significance level of the statistical test used to determine independence, constraint-based 

methods ensure that variables likely to be independent based on prior knowledge (e.g., 

talking and a machine activating) are subject to less rigorous tests of independence than 

variables that, given prior knowledge, are less likely to be independent.   

A somewhat more elegant approach is adopted by Bayesian causal learning 

methods.  Bayesian algorithms assign all the possible causal hypotheses (the causal 

graphs) a prior probability.  This probability is then updated given the actual data (by 

application of Bayes theorem).  The posterior probability of each causal graph is 

evaluated to see which model best fits the data.  Thus it will take more evidence to 

support an initially unlikely causal hypothesis than an initially probable one. 

Several studies show that under conditions of uncertainty, people do take current 

evidence and prior knowledge into account as predicted by Bayesian learning algorithms 

(Griffiths, 2004; Griffiths & Tenenbaum, 2001; Tenenbaum & Griffiths, 2003, 

Tenenbaum and Griffiths this volume).  In one study for instance, adults were taught that 

"super pencils" would activate a "superlead" detector.  During a training period, adults 

were taught that super pencils were either rare (2 of 12 pencils activated the detector) or 

common (10 of 12 activated the detector).  Two (previously untested) pencils were then 

placed on the detector and adults saw that both pencils (A and B) together activated the 

detector and also that A by itself activated the detector.  The adults were asked to 

estimate the likelihood that B by itself would activate the machine. 
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As predicted by the Bayesian learning algorithms, (but not as predicted by 

associative learning accounts) prior knowledge about the prevalence of super pencils 

affected people's causal judgments.  Despite seeing identical evidence about B in both 

conditions, participants believed B was much more likely to activate the machine in the 

common condition than in the rare condition (Tenenbaum & Griffiths, 2003).   Other  

studies showed that four-year-old children could make similar judgments.  Taught either 

that blickets were rare or common, and shown the "backwards blocking" condition 

described above, children inferred that B was a blicket when blickets were common and 

that B was not a blicket when blickets were rare (Sobel, Tenenbaum, & Gopnik, 2004; 

Sobel & Kirkham, this volume, Tenenbaum & Griffiths, this volume).   

So if preschool children take prior knowledge into account when making causal 

judgments, why did children in the talking machine experiment violate their knowledge 

about domain-appropriate causes on the evidence of a single trial?   Note that in the 

cross-domains experiment, children were given deterministic data: Buttons and the 

machine turning on were always independent conditional on talking; talking and the 

machine turning on were always unconditionally dependent.  When evidence is 

deterministic, you don't need statistical tests to determine independence and whatever the 

prior probability of the hypothesis, the posterior probability is 100%.  Given the 

deterministic evidence, children's inferences were identical to those that would be made 

by the formalism. 

Importantly however, in a more ambiguous scenario, children did take prior 

knowledge into account.  We replicated the machine/talking experiment with a new 

group of children and then tested the children on a "transfer condition" with a novel toy, a 
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novel speech act, and two novel switches.  In the transfer condition, children received no 

evidence about the novel stimuli; we simply asked the children how they would activate 

the novel toy: by talking to it or by flipping the switches. In the test condition, the 

children talked to the machine, just as in the previous study. However, in the transfer 

condition, despite the similarity of the stimuli, the children largely reverted back to their 

prior knowledge: 75% of the children chose the switches (the domain-appropriate cause).  

Equally importantly however, the prior exposure to the domain-inappropriate 

evidence did affect children's causal judgments.  Children were significantly more likely 

to choose the domain-inappropriate cause in the transfer condition than in the previous 

baseline condition (i.e., where they had no evidence whatsoever about domain-

inappropriate causes). The recent exposure to counter-intuitive evidence affected how 

children extended their causal inferences. Similarly, as discussed in Section A, we found 

that many children would override their preference for contact in physical causal relations 

in light of probabilistic evidence for action-at-a-distance.  Thus the combination of prior 

knowledge and formal inference procedures seems to allow for learning that is both 

conservative and innovative.  

This tension between conservativism and innovation is consistent with a theory 

theory approach to conceptual development and is also a salient feature of adult scientific 

inquiry. Surprising evidence is often questioned or dismissed before it is taken seriously 

enough to establish the theories that will, in turn, make the evidence predictable. As 

William James (perhaps apocryphally) is said to have quipped: "When a thing is new, 

people say: 'It is not true.' Later, when its truth becomes obvious, they say: 'It is not 



 36 

important.'  Finally, when its importance cannot be denied they say: 'Anyway, it is not 

new.'"  

As scientists, we may kvetch about the tendency of prior beliefs to squelch 

innovation, however, as an extension of the inferential procedures used in childhood, the 

advantages of carefully weighing new evidence against old is clear. If children's learning 

were too flexible  -- if it were, for instance wholly dictated by the most recent evidence 

observed -- then children would be subject to endless error.  Children live in a noisy 

world and might easily be exposed to misleading data. If, on the other hand, innate or 

prior knowledge acted as a strong constraint on children's causal learning, then errors 

made early in development would be irreparable.  Children would be intransigent in the 

fact of corrective evidence and helpless in genuinely novel environments.  

Although science has a reputation for objectivity, one of the advantages of having 

a theory (naïve or scientific) is precisely that all evidence is not treated equally. By 

limiting the evidence to which we attend, or which we take seriously, theories explain in 

part why science can get so much inferential power out of a "trifling investment in fact".  

Formal inference procedures, able to take into account both prior knowledge and new 

evidence, may provide just the sort of learning mechanism that allows children’s causal 

theories to be both stable and defeasible.  

F) Distinguishing good interventions from confounded ones 

People who get exercised by the concept of child as scientist frequently point out 

what is indisputably the case: that children, unlike scientists, do not go around designing 

controlled experiments to test their theories.  Moreover, when children do try to design 

experiments (i.e., because a teacher or a researcher asks them to) they perform poorly.  
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Children tend to intervene on many variables at once, change interventions between 

conditions, and then draw all the wrong conclusions.  Adults (and often scientists!) do 

little better (Kuhn, 1989; Kuhn, Amsel & O’Laughlin, 1988; Masnick & Klahr, 2003).  

However, designing an experiment requires metacognition.  To design an 

appropriate intervention, you have to know what makes an intervention appropriate.  

Learning from interventions does not require metacognition. You may have no idea what 

makes one intervention better than another and still be able to draw correct conclusions 

from the patterns of evidence that result.  

In the previous sections, we provided evidence suggesting that when children are 

given good evidence, they draw normative causal conclusions.  What happens, however, 

when children are given bad evidence? Are there conditions under which children realize 

that interventions are confounded?  Does confounding change the types of inferences 

children make?  

The conditional intervention principle defined an intervention so as to rule out 

instances of confounding: an intervention on X should be exogenous, should break all the 

arrows into X, and should not influence any other variable in the graph except through X. 

In the test condition of the gear toy experiment, we showed children evidence consistent 

with the conditional intervention principle and children were able to learn the relationship 

of the gears to one another.  

In the control condition however, we concealed the state of the switch.  Thus, just 

as in the test condition, children saw for instance, that gear A spun when B was removed 

but gear B failed to spin when gear A was removed.  However, with the switch hidden, 

the children couldn't know whether B failed to spin because gear A was removed or 
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because the experimenter failed to flip on the switch. That is, there was no way to know 

whether the intervention to remove gear A broke all the arrows into B or not.  Although 

the movement of the gears was the same in both conditions, children in the control 

conditions responded at chance and – anecdotally – tried to look behind the machine to 

determine whether the switch was on or off! 

In a different set of studies, we looked at children's sensitivity to probabilistic 

causes and the role played by their own interventions.  In an Observation condition, 

children saw an experimenter place a block on a toy three times in a row.  The children 

saw that one block made the toy light up 2 out of 3 times while another block made the 

toy light up only 1 out of 3 times.  Children were told that each block had "special stuff" 

inside and were asked which block has more "special stuff".  The children distinguished 

the 2/3 probability from the 1/3 and said that the 2/3 block had more "special stuff".   

The Intervention condition was identical except that children were allowed to 

intervene on the block on the third trial.  For the 2/3 block, children saw the block light 

up the toy twice, but when they tried the block, it failed to light up.  For the 1/3 block, 

children saw the block fail to light up the toy twice, but when they tried the block, the toy 

did light up. In this condition, children said that the 1/3 block had more "special stuff".  

Children seemed to prefer making inferences based on their own interventions. 

Critically however, the children were also tested in a Confounding control 

condition.  In the control condition, children saw exactly the same evidence as in the test 

condition, however this time when the child the intervened, the experimenter 

simultaneously pushed a button "to make the toy light up".  The child's "intervention" 

was thus no longer a real intervention – it did not break other arrows (like the 
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experimenter pushing the button) into the effect.  When the children's own interventions 

were confounded in this way, they did not express a preference for their own 

interventions; the children returned to judging the blocks on the basis of the probabilities 

(Kushnir, 2003; Kushnir & Gopnik, in press). 

These findings suggest that although children may not be able to design controlled 

experiments, they do, at least in certain cases, recognize instances of confounding.  

Children seem to be sensitive to some of the fundamental features of experimental design 

and make different inferences when causal manipulations are consistent with the 

conditional intervention principle than when they are not.  

Still, we might ask how, in the absence of controlled experiments, children are able 

to learn so much from interventions.  We rely on experimental design heavily in science; 

how can children learn so much in its absence? Why aren't children constantly running 

into confounded interventions and drawing inaccurate causal conclusions?  

One possibility is that the very fact of being a child might serve children well.  

Children are notorious for being impulsive (they get into a lot of things) and 

perseverative (they get into the same things over and over again).  Cast in a more positive 

light, children tend to intervene a lot and they tend to replicate their interventions.  

Children's very immaturity (and in particular, the protracted development of their 

prefrontal cortex which (in adults) seems to inhibit impulsivity (e.g., Casey, Giedd & 

Thomas, 2000; Chao & Knight, 1998) and prevent perseveration (e.g., Goel & 

Graffman, 1995) may support causal learning.  

How might immaturity and noise substitute for controlled experimental design? 

Note that to infer that X causes Y, you don't necessarily have to hold other causes of Y 
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constant. You can also randomize other causes of Y.  Children's tendency to intervene in 

many different contexts and their tendency to replicate their actions might be 

advantageous.  Other causes of Y (whatever Y is) might exist, but children's own actions 

are unlikely to always coincide with those causes.  Certainly, children may occasionally 

leap to the wrong causal conclusion from bad evidence.  Wu and Cheng (1999) for 

instance, cite a childhood anecdote in which one of the authors dropped a vase at the 

same time that a power outage occurred and thus blamed herself for the blackout.  

However, such anecdotes are funny in part because they are rare.  In general, children's 

own actions may be a trustworthy foundation for their causal inferences and naïve 

theories. 

Conclusion  

In many respects, the causal Bayes net formalism seems to provide a learning 

mechanism that captures the dynamic nature of theories – and in many respects, 

children's learning seems to be commensurate with the predictions made by the 

formalism.  However, the causal Bayes net formalism may not tell the whole story.  In 

particular, the formalism may not entirely satisfy Mark Twain. How we get such 

"wholesale returns of conjecture out of a trifling investment in fact" remains something 

of a mystery.   

Causal Bayes net algorithms were developed for use in procedures like data mining, 

where evidence is plentiful but the causal relationships are obscure.  Constraint-based 

search methods thus rely upon the evidence of many trials or assume the available data is 

representative of a larger sample. Bayesian learning algorithms rely either upon an 

abundance of data or an abundance of prior knowledge.  
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In our experiments by contrast, evidence was scarce.  Children made causal 

inferences from a minimal amount of data, often using only the evidence of a single trial.  

As Tenenbaum and Griffiths (2003) note, in "Many cases . . . causal inference follow(s) 

from just one or a few observations, where there isn't even enough data to reliably infer 

correlation!"   

Note however, that the causal Bayes net formalism was also developed to infer 

causal structure from noisy, probabilistic data in contexts where interventions were 

impossible (e.g., in epidemiological studies).  By contrast, in all of our studies, children 

observed or performed interventions, and in most cases the evidence they saw was 

deterministic. Such contexts (when interventions are possible and determinism is 

assumed) may be plentiful in everyday life, and within such contexts, children may not 

need the full apparatus of the causal Bayes net learning algorithms.  Children may be able 

to represent structure as a causal Bayes net, and may use some of the same principles 

about the relationship between evidence and structure, without requiring the full power of 

the learning algorithms (see Richardson et al, this volume). Thus the causal Bayes net 

formalism may be "too big" for what children need to accomplish.   

Alternatively, causal Bayes nets formalism may be "too small".  The algorithms 

may miss a level of abstraction (what Tenenbaum & Niyogi (2003) & Tenenbaum & 

Griffiths (this volume) call a "causal grammar") that encompasses higher order causal 

laws that are assumed but never explicitly presented to the children (for instance, that 

blocks activate detectors and detectors don't activate blocks). Children may be successful 

at learning causal relationships from a few observations (in our lab and in the world) 

because they are already bringing a rich theoretical structure to bear upon the inferential 
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tasks.  Thus the causal Bayes net algorithms may allow children to learn structure from 

minimal data only when they are embedded within higher-order causal theories (see 

Tenenbaum & Griffiths, 2003; Tenenbaum & Niyogi, 2003, and Tenenbaum & Griffiths 

chapter this volume). 

Critically, however, this account may only move the problem of causal inference 

back a step.  Knowledge of higher-order causal laws might support children’s ability to 

learn particular causal relations.  However, somehow children must also learn the higher-

order causal laws – and it seems tempting to assume that children infer higher-order 

causal laws from particular causal relations.  One of the challenges for future research is 

to determine whether such circles can be benign rather than vicious.  In principle, 

children might be able to bootstrap an abstract causal grammar from clear evidence for 

particular causal relationships, and then use the higher-order theory to handle more 

complex or ambiguous evidence for particular causal relations. 

However, even if (as we expect) the causal Bayes net formalism does not end up 

being "just right", it more than any other current computational account, suggests a 

learning mechanism that does justice to much of the breadth and depth of children's naïve 

theories.  In supporting novel predictions, novel interventions, structure learning, 

inferences about unobserved causes, distinctions between observations and interventions, 

and the criteria for a "good" intervention, the causal Bayes net formalism captures much 

that is critical about a theory.  Our hope is that children's ability to engage in theory 

formation and theory change might similarly set the standard for future computational 

accounts of learning.  
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If you are persuaded by little else by this chapter, we hope we have at least 

convinced you of the value of interdisciplinary work.  Research in computer science, 

artificial intelligence, and philosophy has suggested some of the fundamental 

assumptions that might underlie the development of children's naïve theories.  Work in 

developmental psychology has demonstrated that young children are able to learn the 

causal structure of events with remarkable speed and accuracy. We hope that 

investigators in all these areas will continue to find causal learning, in both children and 

science, fascinating for years to come. 
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