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Bayesian models have been applied to many areas of cognitive science includ-
ing vision, language, and motor learning. We discuss the implications of this
framework for cognitive development. We first present a brief introduction to the
Bayesian framework. Bayesian models make assumptions about representation
explicit, and provide a detailed account of learning. Furthermore, they can pro-
vide an account of developmental transitions and other phenomena in develop-
ment, such as curiosity and exploration. Drawing on recent work bridging empirical
developmental data and modeling, we show that these features of the Bayesian
approach provide solutions to problems that elude traditional accounts of learning
and raise new areas of investigation. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Somehow every child solves the baffling and
intractable philosophical problem of induction.

Children take the plethora of ambiguous information
coming in through their senses and turn it into mean-
ingful, abstract, structured representations. Despite
centuries of philosophical thought and empirical
study, we still do not fully understand how this is
possible. How can children’s mental representations
both support wide-ranging new inferences and change
in the light of experience?

This fundamental problem has led to a tension
in cognitive science. How can we learn abstract rep-
resentations from concrete data? The classic nativist
response to this question is to say that learning is an
illusion. We come equipped with abstract representa-
tions. The alternative empiricist response is to say that
abstraction is an illusion. Knowledge is just a collec-
tion of associations derived from the statistics of our
environment.

Nether of these options seems completely
right to most empirically minded developmental
psychologists. That is because we see evidence for
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both abstract representation and sophisticated learn-
ing even in infancy and early childhood. Piaget
proposed ‘constructivism’ as a way to bridge the
nativist/empiricist divide. Piagetians appealed to an
ever-enriching developmental process that employed
mechanisms of accommodation and assimilation.

The ‘theory theory’,1–4 which was a theoret-
ical offspring of constructivism, was also intended
to be an alternative to the nativist and empiricist
extremes. It proposed that children’s beliefs are rich,
structured, and abstract but defeasible representa-
tions. Even if children are equipped with innate (or
rapidly developed) ‘starting-state’ theories, those the-
ories can always be changed in the light of new
evidence.

However, both the Piagetian and theory theory
accounts essentially restate the problem. They fail to
provide a precise account that describes the represen-
tational details of children’s beliefs and specifies the
mechanisms that support learning.

In the last 10 years or so, however, proba-
bilistic models have begun to promise a more pre-
cise solution to the nativist–empiricist tension. These
approaches are based on ideas from the philoso-
phy of science, machine learning, and artificial intel-
ligence. The probabilistic modeling approach starts
by formally describing structured, generative repre-
sentations of the world. These representations can
take many forms including causal graphical models,
taxonomies, and logical grammars. But the crucial
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point is that these models mathematically gener-
ate patterns of observable data. Probabilistic models
make predictions about the kinds of data one should
expect to see, given the generative structure of the
model. These generative structures provide a natu-
ral characterization of abstract mental representations
that produce inferences.

But how could an agent learn the structure from
the data in the first place? How does a learner who
starts with data figure out which structure generated
that data? This poses a particularly sticky problem
because there are often many possible hypotheses
that are compatible with the data—the structure is
underdetermined. So, how do we know which is the
correct hypothesis?

One clever solution is to apply Bayes rule. Bayes
rule is a formula for moving backward from data
to structure. Bayes rule tells us how to evaluate
the probability of a particular structure, given some
observation of data. It does this by combining two
pieces of information. First, the learner starts with a
set of beliefs about which structures are likely, prior
to observing any data; this is called the prior. Then the
learner considers the probability that each structure
would have generated the observed data; this is called
the likelihood. Combining the prior and likelihood
gives a quantity proportional to the probability of the
structure given the data; this is called the posterior.
Determining the probability of a particular structure
given the data is what learning is all about.

In Bayesian learning, learners can use their exist-
ing highly structured knowledge to inform their prior
beliefs and likelihoods. But at the same time new data
can change that knowledge. In this way, Bayes rule
provides a middle ground between classical nativist
and empiricist accounts. As in the classical construc-
tivist accounts a learner’s current beliefs will influence
his/her interpretation of the data, but new data can
also lead to changes in those beliefs.

The basic idea that cognitive models can gen-
erate predictions about data, and that we can invert
that process to learn those models from observations,
is not new. In fact, it is essential to classic cognitive
science accounts of vision and language. The advance
in Bayesian models is to integrate probability theory
with this basic approach. This leads to a new solu-
tion to the under-determination problem. Although
we may not ever know for certain which hypothesis
is correct, we can still know which hypothesis is most
probable given the data. So, the learner might con-
sider multiple possible hypotheses, adjusting which
hypothesis is more or less likely as new evidence
accumulates.

However, the general Bayesian framework is just
a starting point for understanding cognitive devel-
opment. To apply the framework to any particular
example of learning much more is necessary—we must
specify the generative representations and learning
methods in detail.

There are numerous kinds of learning that
contribute to development. Although the Bayesian
approach has been applied to many domains of
development including grammar learning5 and
perception,6,7 conceptual learning, particularly intu-
itive theory formation, is the area that we focus on
here. This approach gives us a way of formalizing
a central and productive, though informal, line of
research in conceptual development. Quite typically,
developmental psychologists explain the behavior of
infants and children by assuming that they have beliefs
about plants or animals, words, or people—and that
those beliefs underpin what they say or do. Similarly,
researchers explain developmental changes by assum-
ing that children’s beliefs are transformed in the light
of evidence. Earlier accounts also informally sketched
how prior structured knowledge could constrain
children’s beliefs and inductions. These inductive con-
straints could take the form of framework theories,1–4

core knowledge (e.g., Ref 8), or rules for particular
domains of learning (e.g., the whole object constraint
in word learning9). Bayesian models are a natural way
to make these kinds of informal explanations more
precise.

Recently, Bayesian models of cognition have
been criticized on a few important grounds. This
includes concerns about models being undercon-
strained and failing to make connection to processes
(e.g., Ref 10), concerns that the overall framework is
unfalsifiable, and concerns that people do not always
behave optimally.11

Many of these concerns reflect problems that
come from confounding different levels of analysis.
One is the distinction between a framework and a
model. Frameworks are high-level approaches to rep-
resenting a problem, such as connectionist models,
production systems, or generative grammars. Frame-
works themselves do not make quantitative predic-
tions and they can typically be used to accommodate
many patterns of data—hence, the falsifiability con-
cerns. Given any particular pattern of data we could,
in principle, construct some connectionist model, pro-
duction rule, generative grammar, or Bayesian model
to explain that data.

Instead, frameworks of this kind generate
a space of possible specific models—in particular
Bayesian, connectionist, or grammatical model.
The specific assumptions of a model of a particular
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phenomenon generate specific new predictions and so
are falsifiable. Critically they help inform us about
the nature of the learner’s representations, biases, and
mechanisms for belief revision. If the specific models
provide good explanations and predictions about
phenomena then the framework is useful.

A second distinction concerns computational or
normative versus algorithmic or descriptive models.
Probabilistic models provide a computational level
account of belief changes and the constraints on
learning.12 The goal is to describe what the problem
is and what the correct solution should be. Thus,
Bayesian models provide a story about how powerful
childhood learning might be possible.13,14 They also
give us a normative benchmark, one we can compare
to the learning we actually see in children. And this in
turn can inform accounts at a process or algorithmic
level.

MAKING REPRESENTATIONS EXPLICIT

In order to describe the problem that a learner
is solving, the variables of interest must be made
explicit. One advantage of the modeling approach is
that it forces us to make representations precise and
explicit. By itself, Bayes rule is too general to say
much. To derive meaningful, quantitative predictions,
Bayesian modeling requires explicit details describ-
ing the learner’s representations and beliefs, the pro-
cesses by which those representations generate data
patterns, and the ‘priors’—that is, the initial inductive
constraints on those representations.

Individual models can thus help us answer spe-
cific questions about development. For example, do
children follow the statistical assumptions of causal-
ity to infer whether one variable was adequately
screened-off by another? Does a taxonomic represen-
tation of animals help explain children’s assumptions
about when to extend the meaning of a novel word
from one animal to another? Do children attend to
the source of information—both how observed events
came to be and whether the source of information is
reliable?

One way to understand the problem of learning
and to ask these questions is to start with the formal
tools of modeling, which provide the in-principle
account of what assumptions are needed in order to
solve the problem in a particular way, given statistical
learning mechanisms. This is partly what is meant
when we say the models operate at the computational
level. It is not necessarily a claim that children are
carrying out exact Bayesian inference (a point we turn
to in ‘from computations to algorithms’), but rather
a description of the tools a learner might need in

order to carry out inference given a particular set of
evidence.

Causal Graphical Models
Causal graphical models or ‘Bayes-nets’ were one of
the earliest types of representations to be employed
in Bayesian models of cognitive development.15–19

Causal graphical models formally represent complex
causal relationships and generate predictions about
the patterns of events those relationships produce.
In particular, they allow complex predictions about
the correlations among causally related variables.
They also allow predictions about ‘interventions’.
They allow one to predict what will happen to other
variables when actively alter one variable.

Early studies showed that preschool children
accurately inferred causal structures from patterns of
correlation and intervention in the way that these
models predicted. Children could use these techniques
to infer complex structures involving relationships
among three variables, discriminating, for example,
between common causes, common effects, and causal
chains.19 In some circumstances, they could even infer
unobserved invisible causes.18,20,21

Further studies demonstrated that children’s
inferences depend on the combined strength of their
prior beliefs and the data. For example, children inte-
grate base rate information with new data to make
sophisticated causal inferences.22,23 Similarly, Kush-
nir and Gopnik24 and Schulz and Gopnik25 showed
that children use additional causal factors, such as
spatiotemporal and domain-specific prior beliefs, to
inform their causal inference following patterns of sta-
tistical data. These results demonstrate that, consistent
with a general Bayesian framework, children combine
prior knowledge and new evidence in sophisticated
ways to inform their causal judgments.

Taxonomies
Taxonomies are another representational scheme
that has been used in Bayesian models of children’s
inferences. Earlier research suggested that children
have a taxonomic bias in word learning, assuming
that kind labels map onto taxonomic categories (e.g.,
Ref 26). Xu and Tenenbaum27 modeled children’s
inferences about the likely meaning of a word with
a Bayesian model of hierarchically structured cate-
gories. Preschoolers were given a few examples of an
item at different levels of a taxonomic hierarchy and
were asked which other objects the term applied to.
The results were consistent with the Bayesian model’s
behavior, but not with other models of word learning,
such as a purely associative (statistical model) or a
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purely deductive (constraint-based) model. Bayesian
models may thus provide a promising common
ground to explain children’s fast mapping of words to
meanings.

In particular, Xu and Tenenbaum’s model
demonstrated that a taxonomic representation could
be used to produce quantitative predictions about
the likelihood of different possible extensions of a
concept. Given that the predictions that derived from
this structure closely matched children’s generaliza-
tions, this provides support for the claim that children
represent these categories taxonomically. Thus, the
Bayesian model both provides a story about how rapid
learning may be possible and also makes explicit the
likely representations underlying this learning.

Hierarchical Models
Causal graphical models and taxonomies oper-
ate at only one level of abstraction. Griffiths and
coworkers28 proposed a technique for describing and
learning hierarchical Bayesian models. These models
include more abstract meta-representations of the
structure of possible hypotheses such as, for example,
the fact that causal relationships are deterministic or
indeterministic, or that they have different logical or
relational structures. Hierarchical models enable one
to represent what the philosopher Nelson Goodman
called ‘overhypotheses’—that is hypotheses about
what specific hypotheses will be like.29 Such rep-
resentations are a natural way of representing the
kinds of ‘core knowledge’, ‘framework theories’, or
‘constraints’ that have been proposed to constrain
children’s inferences.

For example, Schulz et al.30 developed a
Bayesian model of children’s cross-domain causal rea-
soning, such as inferring that psychological anxieties
could cause physical illness. Children’s hypothe-
ses were represented using causal graphical models
(hypotheses) that captured the various potential
causes in the story (e.g., eating cheese, being worried)
and the effect (e.g., Bunny getting a tummy ache).
The probability of different hypotheses (e.g., a graph
where cheese causes tummy aches, but worrying does
not vs a graph where worrying causes tummy aches
but cheese does not) was given by a framework theory.
The framework theory captured general principles
about the probability of causes leading to effects
within and cross-domains. In this way, the framework
theory helped guide the probability of any particular
hypothesis being correct, as well as specifying the
likelihoods of the data observed in the story, given
each particular hypothesis.

Four-year-olds inferences from ambiguous
(but informative) statistical evidence corresponded

strongly with the model, though younger children
failed to learn from the evidence when it conflicted
with their strong prior beliefs. A follow-up training
study31 suggested that both broad prior beliefs and
the ability to learn from the statistical evidence in
these contexts were responsible for younger children’s
failure in the original task.

Hierarchical causal models provide a detailed
account of the relationship between theory and evi-
dence in children’s causal reasoning. They also provide
an explanation of conflicting findings suggesting that
children privilege domain-specific causal knowledge
on one hand or domain-general causal and statistical
learning mechanisms on the other hand.

Logical Grammars
In principle, models of learning act as a starting
point for age-old developmental questions about what
minimal descriptions are necessary for learning to get
off the ground. Thus, they potentially inform our
understanding of likely innate constraints, as well as
speaking to the learning mechanisms that are required
given those constraints.

For example, more recently, Bayesian models
have proposed even more abstract representational
structures. Logical grammars have been proposed as
a possible broad ‘language of thought’: other more
specific representations can be encoded in this broader
language.32 For example, Kemp et al.33 showed how
such languages might be used to capture the content
in intuitive theories as well as tell a story about how
intuitive theories might be learned. Logical grammars
have been extended to show how a theory of causality
itself might be learnable.34 Causal graphical models,
then, would be seen as a specific instance of the more
general class of logical grammars.

Empirically, Bonawitz et al.35,36 explored
preschooler’s solution to a ‘chicken-and-egg’ problem
in the domain of magnetism. Causal models assume
that we can first specify the causal categories that
are being considered and then establish the relations
between them. But it is often hard to say which comes
first: learning that objects belong to causal categories
or understanding the causal relationships between
those categories. Bonawitz et al.35,36 extended a log-
ical grammar model from Ullman et al.37 to solve
this problem. Preschoolers were presented with two
different simplified magnet learning tasks, which
required simultaneous inferences about causal laws
(e.g., repulsion vs attraction) and causal categories
(e.g., metals vs magnets). Children were able to solve
the problem in a basically rational way—integrating
multiple pieces of evidence across different phases
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of the experiment and abstractly inferring both the
correct number of categories and the laws that related
those categories.

Two different hierarchical models were tested
against children’s responses. The first generative model
included a bias for producing stick relations among
possible logical clauses (which dictated whether cate-
gories of objects should stick or repel to each other).
The second model did not incorporate this bias. Both
models could provide an in-principle solution to the
chicken-and-egg problem in the domain of magnetism,
but the stick bias model captured reflected the pattern
of responses generated by the children, suggesting that
children might share a similar inductive constraint.

MAKING SAMPLING
ASSUMPTIONS EXPLICIT

Another important component of Bayesian models is
making explicit assumptions about how the generative
model produces the data. In particular, the models can
specify whether the data are a random or represen-
tative sample of the possible data. Imagine visiting a
foreign country and trying to learn a new word. The
strength of the inferences one can draw about that
word’s meaning will depend on the context. If we only
observe three Dalmatians and the informant tells that
all three are ‘gavagais’, we may be uncertain about
whether the label applies only to ‘Dalmatians’ or to
‘dogs’ in general. However, if the informant purposely
labels only the three Dalmatians from a broader set of
dogs, it will be more likely that the label applies only
to Dalmatians. (If the label applied to dogs in general,
a helpful teacher would have selected a broader set of
examples to label.)

Bayesian models make these sampling assump-
tions explicit. For example, Xu and Tenenbaum27

modeled their word learning tasks as following the
strong sampling assumption: observations were gener-
ated by a knowledgeable informant who was assumed
to sample randomly from within the space of con-
sistent data. In a different set of studies, Xu and
Tenenbaum38 showed how these assumptions can be
manipulated and how this manipulation influences
both model predictions and human behavior. Models
(and children) will make different predictions if they
believe that the informant is sampling nonrandomly.

Models that specify sampling assumptions can
also inform inferences about the properties of both
objects and people. For example, Gweon et al.39

showed 15-month-old infants’ sets of objects and
provided cues about whether the objects were drawn
randomly or purposely from a box—infants were
more likely to assume that a property of the drawn

object (squeaking) applied to other objects in the
randomly drawn object condition. Kushnir et al.40

showed that 20-month-olds could infer desires and
preferences from sampling patterns—they assumed
that when people picked objects from a population
in a nonrandom way they preferred those objects.
These results suggest that even infants and toddlers are
sensitive to details of the generative process that gave
rise to the data.

The models and the behavioral data work
together to inform our understanding of children’s
early inferences about others. The models helped clar-
ify the potential variables and sampling assumptions
that are otherwise implicit in the problem, and they
inform experimental manipulations that demonstrate
children are likewise dependent on these assumptions
in their own early, sophisticated inferences.

Data are also sometimes generated by a teacher,
who intentionally chooses an ideal and representative
set of data for a learner. Shafto and Goodman41 use
a pedagogical Bayesian model to describe how these
sampling assumptions can allow learners to make
even stronger inferences. These Bayesian pedagogical
models are consistent with preschooler’s inferences
following pedagogical cues (e.g., see Ref 42). Other
studies suggest that preschooler’s exploratory play
causal inferences, and imitation43,44 are sensitive to
this further subtle information about how data were
generated.

INTEGRATING MULTIPLE SOURCES
OF INFORMATION

One of the other tensions in developmental psychol-
ogy stems from the fact that children seem to use
many different sources of information in making infer-
ences. For example, there is evidence that children
use perceptual, statistical, and sociocultural informa-
tion in their inferences about word meaning. This
has led to theoretical battles about which kinds of
information are most important. One of the advan-
tages of probabilistic models is that they provide a
natural way to integrate multiple kinds of data, and
also predict the contributing role of these informa-
tion sources in different contexts. For example, both
statistical and social information might independently
lend probabilistic weight to one hypothesis rather than
another. Moreover, joint inferences can be described
in which multiple hypotheses and their interactions
can be considered simultaneously. In particular, more
recent Bayesian models incorporate rich information
about the social world and provide a better account
of children’s inferences in social contexts.
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For example, to explain how children bridge
social and causal inferences, Shafto et al.45 developed
a model of epistemic trust as an explanatory account
for 3- and 4-year-olds behavior on trust tasks. Unlike
previous accounts of preschooler’s trust reasoning, this
model simultaneously infers an informant’s knowl-
edge, intent, and the true state of the world and it
does a better job of capturing preschoolers’ behavior.
Furthermore, the model predicted that developmental
changes between 3 and 4 years of age stemmed from
changing beliefs about helpfulness. Shafto et al.’s45

computational model explained how a learner might
be able to simultaneously make inferences about the
informant’s trustworthiness and the true state of the
world (see also Ref 46).

Bayesian models can also integrate other infor-
mation. For example, an actor’s choice of objects can
be combined with information about the properties
of those objects. Models with these components make
predictions about an actor’s future novel object pref-
erences (e.g., Ref 47). Lucas et al.’s47 joint inference
model captures developmental data from many dif-
ferent studies of how children learn the preferences
of others. It demonstrates that children are sensi-
tive to the sampling population when they determine
preferences40 as well as to the degree of property
overlap between objects when they decide whether to
extend preference generalization.48,49 A single model
can integrate the results of what appear to be very
different developmental investigations of preference
learning.

Models that integrate different kinds of infer-
ences have also informed our understanding of social
reasoning in infants. The Bayesian inverse planning
framework explored by Hamlin et al.50 helps explain
how a rational observer might reason about the mental
states of an actor. The model makes a few assump-
tions: agents rationally plan actions given their goals
and beliefs and there are different classes of agents
(helpers or hinderers) whose goals are either comple-
mentary or contradictory to another agent’s goals. The
model explains how the same actions can lead to dif-
ferent judgments about the agent because inferences
depend on combining information about the agent’s
beliefs, knowledge, and goals. Hamlin et al.50 found
that infants’ behavior fits the rational inverse plan-
ning model. Furthermore, the model provided a better
account of infants’ performance than accounts sug-
gesting that infants rely solely on perceptual cues.

TRANSITIONS IN DEVELOPMENT

So far, we have discussed how Bayesian models
inform our understanding of the representational

frameworks, sampling assumptions, and rich mutual
inferences that children are able to make. We have
shown that when children are given a particular
kind of data, they draw conclusions that are con-
sistent with those representations, assumptions, and
inferences.

So, we can use specific models to characterize
the content of children’s knowledge at different stages
of development. But, importantly, modeling can also
explain the mechanisms that are responsible for tran-
sitions between stages. For example, Bayesian models
naturally capture the trade-off between simplicity and
goodness-of-fit that often drives cognitive change.51

The likelihood term in the Bayesian model will always
prefer the more specific hypothesis; that is the data that
fit the hypothesis best. However, less specific hypothe-
ses are more likely in general,a and so will be weighted
more heavily in the prior, and will be preferred if
data are relatively sparse. Scientific theorizing invokes
a preference for simplicity, as in the use of Occam’s
razor. Recent developmental data suggest that children
do too. For example, preschoolers prefer explanations
with fewer causal variables.52

This Bayesian Occam’s razor can capture clas-
sic developmental transitions in several domains. For
example, Goodman et al.53 showed how preschooler’s
false-belief understanding can be described as a tran-
sition between two causal models. The earlier ‘naive
realist model’ is simpler than the ‘knower model’
and so is initially preferred. The knower model
is more complex and thus has greater explana-
tory power and comes to be more probable as
more data accumulate. Goodman et al.53 predicted a
transitional asymmetry following surprising evidence
and this corresponded with preschooler’s false belief
performance.b

In other work, Lucas et al.55 developed a
Bayesian model that captures another developmental
transition. Empirical studies suggest that toddlers ini-
tially believe that people all share common preferences
but eventually learn that individuals can have differ-
ent preferences.56 The Lucas et al. model55 depends
on the fact that the shared-preference belief is more
parsimonious than the different-preference belief and
so is initially favored. However, with experience, data
eventually favor the more complex model.

Gerken57,58 has suggested that infants also show
this trade-off between simplicity and evidence when
they learn linguistic rules. Kemp and Tenenbaum59

have demonstrated how other radical developmental
shifts (e.g., a shift from a simpler cluster model of
animal organization to a more complex tree model)
can naturally fall out of a Bayesian model as data are
acquired.
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HIERARCHICAL BAYESIAN MODELS
AND THE BLESSING OF ABSTRACTION

Like classic ‘constraint theories’ hierarachical
Bayesian models put limits on what children will
infer from data and so help to solve the under-
determination problem. Unlike the constraints in such
theories however, these higher order constraints can
themselves be learned from data in a Bayesian way.
In fact, several recent empirical studies show that
even infants can infer ‘overhypotheses’ as well as
more specific causal and taxonomic hypotheses.60–62

Learning such abstract overhypotheses could help
account for some of the large qualitative conceptual
changes we see in development.

Tenenbaum et al.63 present a computational
story of how one might be able to ‘grow a mind’,
by virtue of this hierarchical machinery in Bayesian
models. They describe several case studies in which
abstract knowledge can be rapidly inferred from
remarkably little data. In fact, Goodman et al.34

present cases in which inference at these higher lev-
els of abstraction may precede inferences at the lower
level. They call this the ‘blessing of abstraction’. The
blessing of abstraction naturally falls out because
each additional degree of freedom at higher levels of
abstraction receives evidence from all the variables at
each level below.

This is in contrast to both traditional nativist
and empiricist accounts which assume that learning
more abstract knowledge depends on first learning
more concrete kinds of knowledge. In fact, nativist
arguments often rest on the fact that abstract gen-
eralizations are in place very early. But the blessing
of abstraction is consistent with developmental data,
suggesting that children may sometimes learn abstract
rules earlier than more concrete ones.

Other studies describe how hierarchical infer-
ence can lead to developmental leaps. Piantadosi
et al.64 developed a hierarchical Bayesian model to
account for numerical development. Their model can
account for the inductive leap young children make
when they transition from understanding a few num-
ber words, to the rich system that affords adult-like
numerical understanding. A similar approach has
been used to explain children’s acquisition of
quantifier semantics.65 Lucas and Griffiths66 have
developed hierarchical models that describe how
learners might infer abstract causal principals, and
they have applied this model to explain developmen-
tal differences in learning these forms.47,62 Seiver
et al. showed how children could infer abstract social
concepts such as concepts of traits, from specific
behavioral data.67

CONSIDERING ADDITIONAL
QUESTIONS IN DEVELOPMENTAL
PSYCHOLOGY

Another benefit of the general Bayesian framework is
that it provides a possible story about when young
learners should be interested in exploring or attend-
ing to a particular variable. Bonawitz et al.68 suggest
that children may be curious when two (or more) com-
peting explanations for the data are approximately
equal, either because the evidence fails to distinguish
the plausible hypotheses or because the evidence is
strongly consistent with a weakly held belief and
simultaneously inconsistent with a strongly held prior
belief (see also Ref 69). Work by Schulz and cowork-
ers supports this idea, showing that children choose to
explore in cases where the prior beliefs and evidence
interact in a way that leads competing hypotheses to
be roughly equivalent.68,70–72

For example, research by Bonawitz et al.68

examined children’s exploratory play, explanation,
and learning in the domain of balance understanding.
Children were first given a test that characterized
their stage of balance understanding. Younger chil-
dren typically are ‘center theorists’ believing that
objects always balance at their geometrical center,
while older children are ‘mass theorists’ recognizing
that the distribution of weight of the object has to be
considered. Then children were shown a block that
balanced in a way that was either consistent or incon-
sistent with their prior theory. Children were given
the opportunity to explore the block. They preferred
to play with the block when the evidence contradicted
their beliefs. Because evidence that was surprising to
children with one theory was consistent to children
with the other theory, these results demonstrated the
importance of considering both the effects of evidence
and of prior beliefs. After they had played, children
were asked to explain the balance event. Again, and
consistent with general predictions of the Bayesian
framework, children’s explanations depended on both
their prior beliefs and the evidence that they observed.

On a similar theme, Bayesian analysis has been
used to help explain infant looking time results.73 A
Bayesian ideal observer model would predict that opti-
mal learning occurs for material that is not too sim-
ple (already learned) or too complex (unknowable).
Kidd et al.’s73 results suggest that infants prefer stim-
uli that are moderately complex (predictable) given a
set of probabilistic expectations. Additional Bayesian
analyses revealed that these results hold for indi-
vidual infants,74 and ongoing work suggests exten-
sion in infant auditory cognition.75 This application
of a Bayesian model may help resolve longstanding
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concerns regarding the interpretation of results from
habituation and preferential looking paradigms.

FROM COMPUTATIONS
TO ALGORITHMS

Most of the Bayesian models of cognitive develop-
ment have functioned at the computational level12 of
analysis. They characterize representations, and they
demonstrate how those representations may change
with learning.

However, these models do not describe how the
mind carries out these inferences in detail. Indeed, a
major drawback of the Bayesian approach is the vast
space of possible hypotheses to be considered—how
could a learner actually enumerate and evaluate each
one in real time? Answering this question is one of the
key problems for future work.

There are approximation algorithms that can
produce behavior that looks Bayesian on aggregate,
but that does not require that learner is actually carry-
ing out Bayesian inference over the (potentially) vast
space of possible hypotheses. In machine learning the
solutions to this problem involve sampling just a few
hypotheses at a time, randomly selected from a prob-
ability distribution, and then testing those hypotheses
against the data. (These sampling algorithms should
not be confused with the previously discussed sam-
pling assumptions built into Bayesians models.) These
algorithms can be shown to converge to ideal Bayesian
computational solutions in the long run, but they are
much more computationally tractable. They can also
provide a rational account of adult behavior (e.g., Refs
76 and 77).

There is evidence that children also ‘sample’
hypotheses from a probability distribution in this
way.78 Denison et al. showed children a box full of
red and blue chips in different proportions, and asked
them to guess the color of a chip invisibly selected at
random, often several times. Children’s responses were
variable: the same child would sometimes say red and
sometimes say blue. However, the proportion of ‘red’
or ‘blue’ responses closely tracked the probability of
the relevant hypotheses, children said ‘red’ more often
when that was more likely to be the correct answer.
This is a signature of sampling.

There are lots of ways in which a learner could
sample hypotheses. The simplest idea is that each
time a learner observes new data, she recomputes
the updated posterior and samples a guess from that
updated distribution. This kind of approach to updat-
ing predicts that subsequent guesses from a single
learner will be independent. That is, knowing that a
learner prefers a specific hypothesis at a particular time

tells nothing about what hypothesis he is likely to have
after the next observation of data. Another possibility
is that a learner tends to maintain a hypothesis that
makes a successful prediction and only tries a new
hypothesis when the data weigh against the original
choice—a ‘win-stay: lose-shift’ strategy. This means
that an individual will tend toward ‘stickiness’—she
will be more likely to keep the current hypothesis,
and this will lead to dependency between responses.
A learner following either algorithm would appear to
randomly vary from one hypothesis to the next, but
importantly both algorithms share the property that
behavior on aggregate produces responses consistent
with an optimal Bayesian model.

To explore these algorithms, Bonawitz
et al.79 provided children and adults with a ‘mini-
microgenetic’ experiment, in which learners were
presented with new data gradually and trial-by-trial
asked about their beliefs after each new presentation
of evidence. By comparing the subsequent hypotheses
generated by each participant trial-by-trial to the
predictions of these two algorithms, Bonawitz et al.79

were able to show that children and adults produce
dependencies that are the signature of the win-stay,
lose-shift algorithm (see also Ref 80 for a review).

Once again this approach not only shows how
it is possible for children to solve inductive prob-
lems but also illuminates a classic developmental
problem—the variability that is characteristic of
children’s belief revision. There is substantial vari-
ability in children’s responses, and children often
entertain multiple hypotheses and strategies at once
(e.g., Ref 81). This variability was one of the factors
that originally led Piaget to describe young children’s
behavior as irrational. Indeed, such findings have led
some researchers to suggest that children’s behavior
is always intrinsically variable and context-dependent
(e.g., Refs 82–84). Other researchers assume that this
variability is simply the result of extraneous factors
such as noise or information-processing limitations.

The sampling hypothesis provides a rational way
of explaining this variability. If children implicitly
sample from a distribution of hypotheses then we
would expect their responses to be variable, and yet
also to reflect the probability of different beliefs.

The idea that children sample from hypotheses
and search through possibilities also suggests some
interesting developmental hypotheses. Lucas et al.47

suggest that this search may take place in different
ways at different developmental periods. Younger
children may search in a more exploratory way,
while older children and adults search in a more
constrained way, and this may explain developmental
differences.

82 © 2014 John Wiley & Sons, Ltd. Volume 6, March/Apr i l 2015



WIREs Cognitive Science Bayesian models of child development

CONCLUSION
Bayesian modeling can provide new insights into old
problems in cognitive development. It is important to
emphasize, however, that Bayesianism is a very general
approach to development that must be instantiated
in particular models in order to provide testable
hypotheses—it is a broad framework theory that
allows researchers to construct much more specific
particular theories of children’s beliefs and learning.
A principal advantage of the Bayesian framework is
that it allows those particular theories to be phrased
in precise and transparent ways.

Bayesian models can precisely characterize the
representations that children use in different domains
at different stages of development. They can also pro-
vide precise accounts of learning and of developmen-
tal transitions. Nonetheless, these models have only
begun to scratch the surface. Much work must still
be done to specify the content of children’s represen-
tations in any particular domain, and the changes in
those representations.

As we have seen Bayesian models can be made
more complex to solve ever more complex inference
problems, like inferring abstract overhypotheses from
concrete data, or simultaneously integrating hypothe-
ses about teachers, objects, and word meanings. But
as the models grow the size of the potential hypoth-
esis spaces grows too. Algorithmic models have only
just begun to address the question of how a learner
might be able to search through such spaces in real
time. Furthermore, connecting these algorithms to the

brain remains an important challenge, although grow-
ing evidence suggests that Bayesian approaches may be
relevant at the neural level (e.g., Refs 85–88).

Bayesian models are not appropriate for every
question in development. But they are particularly well
designed to address the questions of induction that are
at the heart of many issues in cognitive development.
By applying this approach to children’s cognitive
development, we may better understand how even
very young children develop rich, abstract knowledge
about the world.

NOTES
a Less specific hypotheses may be more likely for a
number of reasons. For example, models with more
variables will be more complex and there will be
a larger space of possible variants in this space of
more complex models. There could be costs associated
with a framework theory generating a model with a
greater number of variables. These costs need not be
arbitrary, but may fall out naturally, as the probability
of any particular model must decrease to account for
a growing number of these variants.
b The Bayesian account of the false-belief transition
has inspired additional developmental studies. For
example, the additional variable in Goodman et al.’s53

more complex knower model can be made salient to
children at the threshold of false-belief understand-
ing, thus improving their performance on false-belief
tasks.54
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